

Particles and Fields in the Solar System The Space Mission Part of LASP

Daniel N. Baker

Laboratory for Atmospheric and Space Physics University of Colorado

"I like the dreams of the future better than the history of the past"

Thomas Jefferson

LASP....The Early Years

1947 The University of Colorado Physics Department begins research collaboration with NRL and the Air Force to develop rocket payloads to perform Solar EUV measurements; in 1948 the University forms the Upper Air Laboratory (UAL)

> 1951 UAL develops Solar UV/EUV instruments and leads the development of rocket pointing control systems for NRL and AFGL flown on V-2s and Aerobee-Hi's

1954 UAL personnel Stacey, Jackson, Nidey, et al. form Ball Brothers Research Corporation

1958 NASA is formed under President Eisenhower

1959 UAL and NRL have measured Solar UV and EUV spectrum down to 50 nm and obtained the first solar X-ray image, UAL begins Solar, Terrestrial, and Planetary research with NASA funding

Early 1960's UAL changes its name to the Laboratory for Atmospheric and Space Physics (LASP)

1960's LASP enters Earth orbiting and interplanetary era of research with OSO and Mariner instrumentation.

Pushing the Frontiers of Space Research

- LASP conducts theoretical and experimental research in....
 - Planetary Studies
 - Solar Influences
 - Atmospheric Sciences
 - Space Physics

- LASP has successfully developed scientific instrumentation for....
 - 14 Deep Space Missions
 - 20 Earth-Orbiting Missions
 - 240 Sub-Orbital Rocket Experiments

Our Active Sun

Understanding Solar Variability

Orbiting Solar Observatory

OSO An engineer checks two spectrometers on OSO 8. *Hughes Aircraft*

Solar Mesosphere Explorer - SME

LASP Missions: SORCE

1998 – present (launched Jan '03)

Solar Dynamics Observatory (SDO)

- SDO launched Feb. 11, 2010
- Completed commissioning on 4/30/10
- Continues in normal operations (24/7 data)

• SDO EVE provides:

- Full EUV coverage: 0.1-122 nm
- Good spectral resolution: 0.1 nm
- High cadence: 10 sec
- Low latency: Space Weather data in <15 min
- SDO AIA provides EUV images
- SDO HMI provides magnetic field images

Solar Dynamics Observatory

Magnetospheric Regions and Currents

Earth's Magnetosphere-Ionosphere System

20-Year SAMPEX History

Demise of SAMPEX

Re-entry on 13 November 2012

NASA Polar Mission

LASP Missions: SNOE

Feb 1995 – Dec 2003 (launched Feb '98)

SNOE: Global Observations of Nitric Oxide

Polar Orbit – constant local time near 11AM/PM

Operated from 1998 to late-2003; Built by students with professional oversight for \$3.5M

Spinning satellite – nitric oxide densities were obtained from 95 to 150 km

SNOE UVS observed 237 nm fluorescently-scattered solar radiance – NO was only measured at locations that were illuminated by the Sun.

LASP Missions: AIM 2003 – present (launched Apr '07)

THEMIS: 5-Spacecraft Mission

Multiscale Effects in Solar-Terrestrial Plasmas

Understanding Magnetic Reconnection: MMS

We need to learn:

- How complex systems catastrophically reconfigure themselves
- How local (multiscale) turbulence relates to global-scale system instability: MMS
- How the progression of geomagnetic disturbances relate to one another (and ultimately lead to global dynamical changes)
 MMS Launched on 12 March 2015

... unlocking the secrets of magnetic reconnection

Addressing Space Weather

RBSP Science Definition Report

Mission Objectives:

- Differentiate among competing processes affecting the acceleration and loss of radiation belt electrons;
- 2. Understand the creation and decay of new radiation belts;
- 3. Quantify the relative contribution of adiabatic and nonadiabatic processes;
- 4. Understand the role of "seed" or source populations; and
- 5. Develop and validate specification models of the radiation belts.

Radiation Belt Storm Probes (RBSP) constellation

RBSP addresses the scientific and programmatic goals of the NASA Living With a Star program.

Relativistic Electron-Proton Telescope (REPT) Instrument

LASP-Built Instrument!

The Radiation Belt Storm Probes (RBSP) program

REPT Flight Units (Right/Left) and EM (Center)

Relativistic Electron-Proton Telescope (REPT): $1 < E_e < 20 \text{ MeV}$; $15 < E_p < 200 \text{ MeV}$

REPT addresses key scientific and programmatic goals of the NASA RBSP (LWS) program.

RBSP Launch—30 August 2012

Radiation Belt Evolution

REPT L-shell sorted electron flux:

-Linear time plot (above)

-Meridional magnetic latitude plot (left), 3 days at a time.

Baker et al., Science, 2013

Rewriting Science Textbooks

Remarkable Radiation Belt Results

Science Express Online 28 February 2013

Science Issue 12 April 2013

Baker et al., 2013

Complete Loss and Rapid Acceleration: REPT on the Van Allen Probes

SDO: Solar Drivers of Earth Changes

REPTA&B 4.2 MeV Spin-averaged

An Impenetrable Barrier?

nature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

IMPENETRABLE BARRIER?

Electrons feeling the squeeze, pg. 531

AVIAN FLU H5N1 — FIVE BIG QUESTIONS What it will take to size up the threat PAGE 456

PIGS WEANED OFF DRUGS Danish farmers cut dependence on antibiotics. PAGE 465

AGRICULTURE

SCIENCE FICTION ARCHITECT OF THE FUTURE David Brini celebrates Ray Bradbury's vision PAGE 471

O NATURE.COM/NATURE

Baker et al., Nature, 2014

Foster, Baker, Erickson,...(2015)

Electron Barrier and VLF Bubble

Manmade VLF Waves

Impenetrable Barrier

LASP Colorado Student Space Weather Experiment

CSSWE studies violent solar flares and their effects on Earth's radiation belt electrons.

NSF-funded CubeSat mission
Designed, built, and tested by CU-Boulder students

The LASP/CSSWE launched onboard the Atlas 5 rocket on September 13, 2012, from the Vandenberg Air Force Base in California. (Courtesy United Launch Alliance)

NLASP

F

The LASP/CSSWE team poses near a LASP Mission Operations room in 2011. CSSWE houses the Relativistic Electron and Proton Telescope integrated little experiment (REPTile). (Courtesy LASP)

Current update:

- Launched and deployed September 13, 2012
- First beacons received September 14, 2012
- Systems operated successfully: Telemetry, voltages, and temperatures nominal
- Science operations Oct. 2012 Present

Mercury MESSENGER

MESSENGER: The Mercury System

Zurbuchen et al., Science, 2011

MESSENGER Energetic Electrons

[Baker et al., JGR, 2015]

MAUEN

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission

> Mars Scout Mission Launched: 2013

Key Understanding of Mars Solar wind-planetary interactions — Evolution and loss of atmosphere Inference of historical changes — Interpreting water loss from planet Program carried out as Scout mission — PI-led project (LASP/UCB/GSFC)

LASP Space Investigations

Solar Probe Plus - 2018

Multiple deep passes into solar corona

NSF's Daniel K. Inouye Solar Telescope ~ 2018

Our Place in the Universe

Astrospheres and Our Heliosphere

Unique Synergism within LASP

Summary

- LASP traces its origins back over 65 years to the Upper Air Laboratory of CU-Boulder.
- Space physics observations of the Sun and Earth's space environment have been central to the LASP mission from the very beginning.
- Wide-ranging modern measurements of plasmas, energetic particles, and fields in space place LASP at the forefront of international space physics research.
- The application of LASP scientific knowledge and technical prowess to space weather issues also places the Lab in an important position of societal relevance in our modern technological society.

Thank you – Questions?

The Societal and Economic Impacts of Severe Space Weather Events

- May 22-23, 2008 in DC
- Approximately 80 attendees from academia, industry, government, and industry associations
 - Association reps aggregated data and helped avoid concerns about proprietary or competitionsensitive data
- Analyses in specific areas; e.g., GPS, power industry, aviation, military systems, human and robotic exploration beyond low-Earth orbit
- Econometric analysis of value of improved SpaceWx forecasts

<section-header>

The Interdependencies of Society

STEREO – A 23 July 2012

2012-07-23 00:05

WSA-ENLIL Model: Solar Wind Speed

Space Weather Disaster Scenario

