

BUDAPEST NEUTRON CENTRE, a consortium of the MTA Centre for Energy Research and the MTA Wigner Research Centre for Physics

Mit látunk az anyagban neutronokkal?

Belgya Tamás

MTA Energiatudományi Kutatóközpont, Energia- és Környezetbiztonsági Intézet

Tartalom

- Bevezetés
- A Budapesti Kutatóreaktor
- Eredmények
- Összefoglalás

Mindenütt anyag vesz körbe bennünket

Hogyan ismerhetjük meg az anyagot?

Kölcsön kell hatni az anyaggal!

Az anyag valahogyan reagál a kölcsönhatásra, azt észlelnünk kell. Az észlelést detektálásnak is nevezzük a tudományban.

A kölcsönhatáshoz használhatunk másik anyagot pl. kavicsot dobálhatunk a vízbe: Csobban: detektor a fülünk Hullám keletkezik: detektor a szemük

Használhatunk sugárzást is pl. grillsütőben hús sütünk Kellemes illatot vagy égett szagot érzünk: detektor az orrunk

Hozzáérünk: detektor a tapintás

Megkóstoljuk: detektor a nyelvük

Tudomány történeti érdekesség Miből áll az anyag?

Nem a fény segítségével állapították meg az atom szerkezetét!

Amedeo Avogadro 1811-ben azt állította, hogy bármely két gázban, melyek térfogata, nyomása és hőmérséklete is megegyezik, azonos számú molekula található meg.

Egészen 1897-ig az atomokat gondolták a legkisebb létező részecskéknek, amikor is J.J. Thomson katódsugarakkal végzett kísérletei során felfedezte az elektront és negatív töltését.

Thomson mazsolás puding elméletét egy korábbi diákja, Ernest Rutherford cáfolta meg 1909-ben, aki megállapította, hogy a tömeg nagy része és a pozitív töltés egésze az atom kellős közepén koncentrálódik, egy parányi kis pontban.

1932-ben Chadwick több elemet, kitett a titokzatos "berilliumalfa sugárzásnak", majd a visszapattanó töltött részecskék energiáját megmérve arra következtetett, hogy a sugárzás elektromosan semleges töltésű, tömeggel is kell rendelkeznie, méghozzá a protonéhoz hasonló tömeggel. → Bohr féle atommodell

1924-ben Louis-Victor de Broglie: minden anyagnak van hullámtermészete (legnagyobb kimutatott a C₆₀)

Anyag: $\lambda = h/p$ Fény: $\lambda = h/p$; p = hf/c

https://hu.wikipedia.org/wiki/Atomelm%C3%A9let

Az anyagi világ építőkövei és az anyag formái

Hogyan ismerhetjük meg az anyagot?

Érzékszerveinkkel (detektor)

- Látás (szín, forma, kicsi, nagy, fényes, matt, tömör, lyukacsos,...)
- Szaglás (illat)
- Ízlelés (édes, keserű, savanyú, fémes, sós,...)
- Tapintás (puha, kemény, lágy, rugalmas, sima, érdes,...)
- Hallás (rezgés, csengés, ...)
- Hőérzet (hideg, meleg, forró, égető,...)
- Emelés (nehéz, könnyű)

Mi van akkor, ha kicsi?

Másik alkalommal

És mi van akkor, ha bele szeretnék nézni? Szétszedjük,

roncsoljuk

Röntgenezzük, nem roncsoljuk

Mivel és hogyan lehet belelátni az anyagba roncsolásmentesen?

"Dobáljunk" neutronokat az anyagnak és nézzük meg mi történik A részecske lehet: foton, elektron, neutron, proton...

Klasszikus dobáskísérlet labdával, legyen egy gömb amire dobálunk másodpercenként 49 labdát detektor

A detektor 40 labdát érzékel kitakart terület: $\sigma = \frac{3 \times 3}{7 \times 7} = 0.18 \ m^2$ Ahol σ a hatáskeresztmetszet

Találati ráta: $R = \sigma \cdot \Phi = 9\frac{1}{s}$; $\Phi = 49\frac{1}{m^2 \cdot s}$ Kvantumos kép: $\sigma = \pi (\lambda_n + R_{mag})^2 \cdot P$ Gyengítési tényező: $\mu_m = \sigma / \rho \frac{m^2}{kg}$ ahol ρ sűrűség Tömegvastagság: $d_m = d\rho \frac{kg}{m^2}$

Beer-Lambert törvény:

 $\frac{\Phi_{\text{átmenő}}}{\Phi_{\text{bejövő}}} = e^{-\mu_m d_m} \qquad \text{A } \sigma \text{ hat} \text{áskeresztmeszet mértékegysége1 barn} = 10^{-28} \text{ m}^2$

A fény

A fény elektromágneses hullám

	látha	tó fény		
alacsony energia energia nagy energia				
1 meV	1 eV	1 keV	1 MeV	
$\begin{array}{c} \text{frekvencia (Hz)} \\ 3 \times 10^{10} & 3 \times 10^{12} & 3 \times 10^{14} & 3 \times 10^{16} & 3 \times 10^{18} \end{array}$				
rádió mikrohullám	infravörös	ultraibolya röntgen	gamma	
10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻¹¹ hullámhossz (m)				

Fizikai adatai			
Tömeg (nyugalmi)	0		
Spin	1		
Bozon			

$$c = \lambda f = \frac{\lambda}{2\pi} \omega [m/s]$$

$$c=299\ 792\ 458\ [m/s]$$

$$E=\hbar\omega = pc\ [eV]$$

$$\hbar=6,582119514 \times 10^{-14}\ [eV \cdot s]$$

A fény hullámtermészete Huygens–Fresnel elv Interferencia

A foton mint hullámcsomag

A neutron és forrása

A neutron semleges részecske

Neutron források (BKR és ISIS)

Ra-Be, Pu-Be, ²⁵²Cf...

Fizikai adatai					
Tömeg	1,674 927 471(21) ·10 ⁻²⁷ kg				
	939,565 4133(58) MeV/c ²				
Élettartam	886 s				
Töltés	0 e nincs				
Mágneses momentum	–1,913 042 73(45) μN[6]				
Spin	1/2				
Barionszám	1				
Paritás	1				

$$E = \frac{1}{2}mv^2 = \frac{1}{2}mc^2 \frac{v^2}{c^2} = kT$$

 $E = 25.26 \text{ m}eV \rightarrow T = 293.16 \text{ } K \rightarrow 2200 \text{ m/s}$

A neutron és a foton kölcsönhatása az anyaggal

Érzékeny a kémiai környezetre

A kölcsönhatásra jellemző mérőszám a hatáskeresztmeszet 1 barn = 10⁻²⁸ m²

Megismerés módszerei Átvilágítás, de mivel?

Fénnyel → ez a leggyakoribb, de csak a külsejét vagy árnyékát látjuk, kivéve az átlátszó anyagokat

1985-ben Wilhelm Conrad Röntgen Lénárd Fülöp féle katódsugárcsővel kísérletezett és felfedezte, hogy a véletlenül otthagyott foto papír megfeketedik. 1901-ben ő kapta meg az első Nobel díjat

1905-ben Lénárd is megkapta a fizikai Nobel díjat (feltételezte, hogy az atomnak csak egy kis részén nem hatol át a Röntgen sugárzás → Rutherford féle atommodell)

*Készítette: Zátonyi Sándor, (ifj.) - A feltöltő saját munkája, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php? curid=10345950

Az első röntgenfelvétel: Röntgen feleségének keze

Analóg képerősítős orvosi képalkotás elve (Radiográfia)

Megismerés módszerei Elem analízis Röntgen Fluoreszencia (XRF)

Nem csak képet kaphatunk, hanem a tárgy elemi összetételét is meghatározhatjuk.

Röntgen-sugarakkal vagy –fotonokkal bombázva az anyagot un. karakterisztikus un. K, L vagy M röntgen-sugarat kapunk. Az energiája 30-100 keV. Ez elegendő, hogy kilökjön egy elektront, azaz egy lyukat keltsen az elektronhéjban. A karakterisztikussugárzás a betöltődés során keletkezik. Az energiája jellemző az elemre, az intenzitása az elem mennyiségére.

Röntgen-forrás minta

detektor

Megismerés módszerei Elem analízis XRF

Szilicium drift detektor (SSD)

Innov-X Delta premium kézi XRF

Hogyan érzékelhetjük a neutronokat és a röntgensugárzást? Anyag és sugárzás kölcsönhatásával

- A röntgensugárzás elektron-lyuk párt kelt az anyagban
- A neutront másodlagos töltött részecske reakcióval észlelhetjük elektron-lyuk pársegítségével

A Budapesti Neutron Centrum és a Budapesti Kutatóreaktor

Az EK üzemelteti a Budapesti Kutatóreaktort neutron forrás

BKR 1959 óta működik Első teljesítménynövelés: 1967 Teljes rekonstrukció és 2. teljesítménynövelés:1986-1993. Teljesítmény: 10 MW Termikus neutron fluxus: $2,5 \cdot 10^{14} \text{ n/cm}^2 \text{s}$ Gyors neutron fluxus: 10¹⁴ n/cm²s Fűtőelem: VVR-SM(-M2) Fűtőelem típus váltás $\mathsf{HEU}\to\mathsf{LEU}$

A reaktor felhasználása

- Függőleges csatornák, aktuálisan 46 db
 - Izotópgyártás (41 csatorna, 188 tok, 27646 óra 2009-ben, ¹²⁸I, ⁶⁰Co);
 - Pneumatikus csőposta (1 db, 30 minta, 60 perc 2009-ben);
 - Anyag vizsgálatokra szolgáló hurok (1 db, folyamatos üzem);
 - Gyorsneutronos besugárzó csatornák (2 db, bórkarbid gyűrűvel szűrt);
- Vízszintes csatornák, összesen 10 db, használatban 8 db!
 - 6 berendezés a reaktorcsarnokban;
 - 7 berendezés a HNF mérőcsarnokban (Hidegneutron forrás 2001-ben üzembe helyezve);
 - 1 berendezés a TOF csarnokban (2007-ben üzembe helyezve);

Mérőcsarnok elrendezés

TOF-mérőcsarnok

Neutronos elemanalitika

MTA EK

Nukleáris Analitikai és Radiográfiai Laboratórium

A PGAA-MIPS berendezés

(NAP VENEUS08 és Baross Gábor támogatás NAL)

Műszerfotók

A Prompt Gamma Aktivációs Analitika fizikai alapja

Prompt Gamma Spektrum nagy tisztaságú germánium detektorral mérve

Compton-suppression up to 11 MeV

Count rate (cps)

Elemi összetétel meghatározása neutronokkal

$$A_{\gamma} = m \cdot S \cdot t; \quad S = \frac{N_A}{M} \cdot \underbrace{\theta \cdot \sigma_0 \cdot P_{\gamma}}_{\sigma_{\gamma}} \cdot \phi \cdot \varepsilon(E_{\gamma}) \cdot f(E_{\gamma})$$

Csúcsterület Illesztésből

PGAA könyvtárból

- m : Az elem tömege
- S: Érzékenység
- A_y : Csúcsterület
- N_A : Avogadro-szám
- M : Moláris tömeg
- θ: Izotóparány
- σ_0 : neutron befogási
- hatáskeresztmetszet
- P_{γ} : Gamma bomlási valószínűség
- ϕ_0 : Neutron fluxus
- ε(E_γ) : Detektorhatásfok

f(E_v)

Mélytengeri vulkanizmus mintáinak vizsgálata (Lawrence Berkeley Nemzeti Laboratóriummal)

Mélytengeri kürtőket találtak a Csendes Óceáni törésvonalak mentén az Alvin tengeralattjáróval

A túlhevített víz kiold a kőzetekből különféle ásványokat

A megvizsgált mintában réz- és vasszulfátokat találtak

PGA analízis eredménye (tömeg%)

	ALVIN 917-R4	ALVIN 1457-1R-C	ALVIN 1461-2R
0	45.9 [*]	41(6), 44.9 [*]	45.1*
s	20.0 (0.2)	0.151 (0.005)	0.16 (0.01)
Ca	11.3 (0.2)	7.22 (0.11)	7.25 (0.13)
Fe	9.28 (0.11)	9.65 (0.08)	9.37 (0.09)
Cu	7.67 (0.07)		
Al		7.10 (0.07)	7.06 (0.12)
Mg	1.8 (0.2)	3.98 (0.11)	3.6 (0.2)
Zn	1.36 (0.05)		
Р		0.85 (0.18)	1.6 (0.2)
Ni	1.17 (0.003)	0.022 (0.002)	
Ti		1.097 (0.008)	1.060 (0.010)
Si	0.55 (0.05)	22.6 (0.3)	22.3 (0.3)
Н	0.368 (0.004)	0.0290 (0.0005)	0.027 (0.001)
Κ	0.27 (0.06)	0.138 (0.004)	0.16 (0.01)
Cl	0.194 (0.002)	0.0566 (0.0005)	0.0188 (0.0005)
Mn		0.154 (0.002)	0.161 (0.004)
Na	0.140 (0.014)	1.97 (0.04)	1.96 (0.05)
V		0.042 (0.002)	0.046 (0.003)
Co	0.0066 (0.0011)	0.0045 (0.0003)	0.0058 (0.0009)
Sc		0.0039 (0.0002)	0.0058 (0.0005)
Cd	0.00352 (0.00005)		0.00024 (0.00003)
В	0.00220 (0.00002)	0.000659 (0.000007)	0.000658 (0.000008)
Dy		0.00099 (0.00008)	0.00111 (0.00014)
Gd	0.000050 (0.000006)	0.000524 (0.000007)	0.000556 (0.000010)
Sm	0.00033 (0.00003)	0.000330 (0.000005)	0.000340 (0.000007)

Üvegtöredékek

Jerzy Kunicki-Goldfinger - Inst. Nuclear Chemistry and Technology, Warsaw

- 45 középkori és barokk üvegtöredéket vizsgáltak
- A cél a műhelyek azonosítása különös tekintettel a bór tartalomra

Zs. Kasztovszky & J. Kunicki, Proceedings of 37th ISA, Springer-Verlag, 2011

PGAA az űrben (A Mars körüli pályán)

Nuclear Radiation from a Planetary Surface

TABLE 2. Accumulation Time at Mars for 10% Relative Uncertainty in Concentration

Element	Energy, MeV	Mode*	Model Composition	Signal†	Background‡	Time, hours
н	2.223	с	0.11%	1.5	0.024	300
C§	4.438	1	0.60%	0.0871	0.113	13000
N	10.829	С	2.8%	0.00190	0.00268	15000
O§	6.129	1	46.6%	0.0192	0.0079	61-0
Na	0.440	1	0.81%	0.249	0.105	730
Mg	1.369	1	3.7%	0.217	0.0403	21 - Ma
Al	7.724	С	4.1%	0.0084	0.0040	1000
Si	1.779	I	21.5%	0.191	0.031	12-51
	3.539	С	21.5%	0.0198	0.0151	32-
S	5.424	С	3.0%	0.0386	0.0091	210
CI	6.111	С	0.70%	0.932	0.0080	15- 18
K	1.461	N	0.12%	17.	0.038	40 + 16
Ca	6.420	С	4.4%	0.0158	0.0067	440
Ti	1.381	С	0.38%	0.111	0.0059	990.
Cr	8.884	С	0.15%	0.053	0.0028	13000.
Mn	7.244	С	0.34%	0.105	0.0049	1100
Fe	7.632	С	13.5%	0.0455	0.0042	7.6 - Fo
	0.847	I	13.5%	0.199	0.0689	39-5
Ni	8.999	С	52. ppm	0.106	0.00266	2.5×10^{5}
Gd	6.749	С	2.2 ppm	22.7	0.00616	69000
Th	2.614	N	0.45 ppm	9.05×10^{3}	0.020	40 - Th
U	0.609	N	0.13 ppm	1.77×10^{4}	0.092	500.

*Mode refers to gamma rays produced by the processes of C, neutron capture; I, neutron inelastic scatter; and N, decay of natural radioactivity.

†Signal is in units of counts/second/mass fraction of the element.

\$Background is in units of counts/second.

§Only the contribution from the surface materials is considered.

Prompt gamma képalkotás

Radiográfia és tomográfia

Röntgen-, gamma- és neutron sugárzás behatolása réz blokkba

Monte Carlo N részecske kód (MCNP) számolással

Maróti Boglárka PhD dolgozatából

A neutronvezetőből egy lyukon keresztül kilépő neutronnyaláb hullámhossz eloszlása

A neutronnyaláb képe a NIPS radiográfiai berendezéssel

T. Belgya Institute of Isotopes HAS, Dept. of Nuclear Research CM on Neutron Source Spectra for EXFOR 13 - 15 April 2011

Komplementaritás és vastagság

absorption

scattering

neutrons

Az iso-térfogat fogalma

Neutron kolimátor (rés) (⁶Li-polymer)

Gamma-kolimátor (Pb)

Gamma-sugárzás a mintából

Ceruza-neutronnyaláb

Mintatartó (AI)

Iso-térfogat

Az első direkt elemanalízis kvázi 3D

Fibula 3D PGAI elemeloszlás analízise az FRM-2 reaktornál

R. Schulze, L. Szentmiklósi, Z. Kis, Archeologia e Calcolatori, 21, 2010, 281-299

Tárgyak PGAI-NR analízise lezárt Pb konténerben

Cu golyók

Aluminum

henger

Urán oxid (U₃O₈)

Vas csavar

Tomográfiás 3D vizualizáció a VGA stúdió szoftverrel

Uránt tartalmazó FEP zacskó

A csúcsterület arányos az iso-térfogatban lévő anyag mennyiségével

L. Szentmiklósi et al, Anal. Methods 2015 (7) 3157

A klór mennyiségi roncsolásmentes analízise archeológiai vas tárgyban (szög)

Watkinson et al, Archaeometry (56) 2014 841–859

Lezárt egyiptomi kerámia a XVIIIth dinasztia korából, Museum of Aquitaine in Bordeaux

Korábbi vizsgálatok

Az edény fényképe, 97mm×64 mm

THz-es átvilágítás és X-ray radiografiája az edénynekr:

Vörös agyag repedésekkel,
Kétrészes dugó (agyag és egy ismeretlen anyag)
Tartalom: mozgó, heterogén

Neutronos vizsgálatunk

Az edény 2D képe

Elmeeloszlás meghatározása PGAI-vel elektronikai hulladékban

Üzemanyagcella működés közben DNR

- A katód elöntése vízzel és az anód kiszáradása az üzemanyagcella üzemképtelenségét okozza
- A kontraszt változtatás módszere a folyamatok nyomon követésére ad lehetőséget
- BME együttműködés Márton Balaskó, László Horváth et al.: Physics Procedia 43 (2013) 254 – 263

Lovas Szépművészeti Múzeum (Leonardo?)

A Szépművészeti Múzeum újra nyitásának egyik fő látványossága

Kis Zoltán, Archeometriai Albizottsági Ülés 2017, Budapest

Lovas Szépművészeti Múzeum (Leonardo?)

neutron tomográfia:

részletes struktúra információ

Kikindai lándzsahegy

neutron tomográfia: Belső felépítés, készítéstechnika és használat

Kikindai lándzsahegy

Összefoglalás

- A neutronok segítségével beleláthatunk a tárgyak belsejébe, ahol az atommagok neutronelnyelését észleljük
- Komplementer információt kapunk a röntgenes radiográfia eredményeihez képest
- A neutronok képesek érzékelni a kis rendszámú elemeket, ezek közül a legfontosabb a hidrogén
- 3Ds elnyelési és elemi képalkotásra is képes
- Az anyagok átlagos elemi vagy izotóp összetétele roncsolásmentesen meghatározható → vizsgálat után további kísérletekre használható marad a tárgy

Köszönet a NAL munkatársainak

Köszönöm a figyelmet!

BUDAPEST NEUTRON CENTRE a consortium of the MTA Centre for Energy Research and the MTA Wigner Research Centre for Physics

