A 2012. évi fizikai Nobel-díj

"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

Serge Haroche

Ecole Normale Superieure, Párizs

David Wineland

National Institute of Standards and Technology (NIST) and University of Colorado Boulder, USA

Kísérletezés mikroszkópikus objektumokkal

Erwin Schrödinger, 1952

"We never experiment with just one electron or atom or (small) molecule. In thought-experiments we sometimes assume that we do; this invariably entails ridiculous consequences...".

Kísérletezés mikroszkópikus objektumokkal

Erwin Schrödinger, 1952

"We never experiment with just one electron or atom or (small) molecule. In thought-experiments we sometimes assume that we do; this invariably entails ridiculous consequences...".

De most már igen!

Kísérletezés mikroszkópikus objektumokkal

Erwin Schrödinger, 1952

"We never experiment with just one electron or atom or (small) molecule. In thought-experiments we sometimes assume that we do; this invariably entails ridiculous consequences...".

De most már igen!

Figure 2. In David Wineland's laboratory in Boulder, Colorado, electrically charged atoms or ione are kept inside a trap by surrounding electric fields. One of the secrets behind Wineland's dreak through is mastery of the art of using laser beams and creating laser plasm. A laser is used by out ho ion in its lowest energy state and thus enables for the start of using laser beams and creating laser plasm.

Rezonátor

Figure 3. In the Sarge Harden laborate and the second seco

from www.nobelprize.org

Mire jó ez?

- Kvantumelmélet fundamentális igazolása közvetlen megfigyelésekkel
- Hosszú ideig kontrollált rendszerek kvantummechanikája: új kérdések, új fizika
- I darab kezelhető rendszer ⇒ 2 db, 3 db, sok darab ⇒ "gép"
- Kvantumszámítógép és kvantumszimulátor

Kvantum realizáció

	P1	P2
ioncsapda	ion helye	elektronfelhő rezgése
rezonátor	foton	elektronfelhő rezgése

Kvantum realizáció

	P1	P2
ioncsapda	ion helye	elektronfelhő rezgése
rezonátor	foton	elektronfelhő rezgése

Tulajdonságok

Kvantum realizáció

	P1	P2
ioncsapda	ion helye	elektronfelhő rezgése
rezonátor	foton	elektronfelhő rezgése

Tulajdonságok

környezettől szigetelt

Kvantum realizáció

	P1	P2
ioncsapda	ion helye	elektronfelhő rezgése
rezonátor	foton	elektronfelhő rezgése

Tulajdonságok

- környezettől szigetelt
- kölcsönható

Kvantum realizáció

	P1	P2
ioncsapda	ion helye	elektronfelhő rezgése
rezonátor	foton	elektronfelhő rezgése

Tulajdonságok

- környezettől szigetelt
- kölcsönható
- kontrollált

